Bright Temporal Soliton-like Pulses in Self-defocusing Media

Nicolas Bélanger, Alain Villeneuve, and Patrick Dumais, Université Laval, Quebec, Canada and J. S. Aitchison, University of Glasgow, Glasgow, Scotland, U. K.

Bright temporal solitons are generating a great deal of interest because of their possible use in long distance optical fiber communications. They maintain their temporal shape by cancelling the detrimental effects of both the dispersion and the Kerr nonlinearity. Until recently, the only demonstration of bright temporal solitons has been in silica optical fibers, which possess a self-focusing nonlinearity (n2 > 0) and an anomalous dispersion (β2 < 0) for λ > 1312 nm. The nonlinear Schrödinger equation (NLS), which describes the propagation of an optical pulse through a nonlinear optical medium with chromatic dispersion, allows bright temporal solitons as long as the nonlinear refraction (n2) is of opposite sign to the dispersion (β2). Hence, a medium with normal dispersion and self-defocusing nonlinearity should also support bright temporal solitons.

Log in or become a member to view the full text of this article.

This article may be available for purchase via the search at Optica Publishing Group.
Optica Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Add a Comment