Skip To Content
ADVERTISEMENT

References and Resources

G.A. Antypas and J. Edgecumbe. “Glass-sealed GaAs-AlGaAs transmission photocathode,” App. Phys. Lett. 26, 371 (1975).

A.F.T. Jun et al. “Silicon-on-insulator M.O.S.F.E.T.S fabricated on laser-annealed polysilicon on SiO2,” Electron. Lett. 15, 435 (1979).

P.R. Saulson. “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 2437 (1990).

E. Yablonovitch et al. “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419 (1990).

K. Numata et al. “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).

A.W. Fang et al. “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203 (2006).

M. Madsen et al. “Nanoscale semiconductor ‘x’ on substrate ‘y’—Processes, devices, and applications,” Adv. Mater. 23, 3115 (2011).

G. Harry et al. Optical Coatings and Thermal Noise in Precision Measurement (Cambridge Univ. Press, 2012).

G.D. Cole et al. “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photon. 7, 644 (2013).

A.R. Johnson et al. “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40, 5117 (2015).

G.D. Cole et al. “High-performance near- and mid-infrared crystalline coatings,” Optica 3, 647 (2016).

M. Pu et al. “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823 (2016).

D. Thomson et al. “Roadmap on silicon photonics,” J. Optics 18, 073003 (2016).

L. Chang et al. “Heterogeneously Integrated GaAs Waveguides on Insulator for Efficient Frequency Conversion,” Laser Photon. Rev. 12, 1800149 (2018).

M. Pu et al. “Ultra-Efficient and Broadband Nonlinear AlGaAs-on-Insulator Chip for Low-Power Optical Signal Processing,” Laser Photon. Rev. 12, 1800111 (2018).

R.R. Kumar et al. “Entangled photon pair generation from an InP membrane micro-ring resonator,” Appl. Phys. Lett. 114, 021104 (2019).

L. Chang et al. “Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators,” Nat. Commun. 11, 1331 (2020).

G. Moody et al. “Chip-scale nonlinear photonics for quantum light generation,” AVS Quantum Sci. 2, 041702 (2020).

J. Qin et al. “On-chip high-efficiency wavelength multicasting of PAM3/PAM4 signals using low-loss AlGaAs-on-insulator nanowaveguides,” Opt. Lett. 45, 4539 (2020).

H. Shu et al. “Ultra-efficient RF photonics filter based on an AlGaAs-on-insulator integrated Kerr frequency comb source,” Conf. on Lasers and Electro-Optics, OSA Tech. Digest paper SF1O.2 (Opt. Soc. Amer. 2020).

E.J. Stanton et al. “Efficient second harmonic generation in nanophotonic GaAs-on-insulator waveguides,” Opt. Express 28, 9521 (2020).

W. Xie et al. “Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics,” Opt. Express 28, 32894 (2020).

S. Ducci et al. “Generation of quantum states of light in nonlinear AlGaAs chips: engineering and applications,” Photoniques 107, 28 (2021).

G. Moody et al. “Roadmap on integrated quantum photonics,” J. Phys.: Photon., doi: 10.1088/2515-7647/ac1ef4 (2021).

T.J. Steiner et al. “Ultra-bright entangled-photon pair generation from an AlGaAs-on-insulator microring resonator,” PRX Quantum 2, 010337 (2021).

G. Winkler et al. “Mid-infrared interference coatings with excess optical loss below 10 ppm,” Optica 8, 686 (2021).

Add a Comment