Svetlana V. Boriskina
Below are the references from the OPN September 2017 feature article, “Optics on the Go.”
Smart glasses and AR vision
- https://www.forbes.com/sites/quora/2017/01/09/how-do-augmented-reality-displays-work/
- I.E. Sutherland, "A head-mounted three-dimensional display," in AFIPS Proc. Fall Joint Computer Conf. 33, 757–64 (1968).
- J. Melzer "Head mounted displays," Mac Graw, Hill (1997) (ISBN 978-1456563493).
- S. Yamazaki et al. "Thin wide-field-of-view HMD with free-form-surface prism and applications," in Stereoscopic Displays and Virtual Reality Systems VI, 3639, SPIE, San Jose, CA, USA, 453-462 (1999).
- J. Rolland and O. Cakmacki, "Head-worn displays: The future through new eyes," Optics and Photonics News, 4, 21-27 (2009).
- O. Cakmakci and J. Rolland, "Head-worn displays: a review," Journal of Display Technology 2, 3 (2006).
- H. Hua and B. Javidi, "Augmented reality: easy on the eyes," Optics and Photonics News, 2 (2015).
- D. Cheng, H. Hua, et al, "Design of an optical see through head mounted display," Applied Optics 48, 14 (2009).
- H. Mukawa et al. “A full-color eyewear display using planar waveguides with reflection volume holograms,” JSID 17, 3, 185-193 (2009).
- P. Ayras, et al. “Exit pupil expander with a large field of view based on diffractive optics,” JSID 17, 8, 659-664 (2009).
- B. Kress, M. Shin, "Diffractive and holographic optics as optical combiners in head mounted displays," Proc. UbiComp, Sept. 8–12, Zurich, Switzerland (2013).
- A. Maimone et al., “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graphics 36, 4 (2017).
- N. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials 13, 139–150 (2014).
- M. Khorasaninejad et al. "Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion," Nano Letters 17, 3, 1819–1824 (2017).
- Hsu, Chia Wei, et al. "Transparent displays enabled by resonant nanoparticle scattering," Nature Communications 5, 3152 (2014).
- M. Yamaguchi, “Light-field and holographic three-dimensional displays,” JOSA-A 33, 12, 2348-2364 (2016).
Active-color-changing textiles
- Yetisen, A. K. et al. Nanotechnology in textiles. ACS Nano 10, 3042-3068 (2016).
- Tao, X. Wearable electronics and photonics. (Elsevier, 2005).
- Spigulis, J., Pfafrods, D., Stafeckis, M. & Jelinska-Platace, W. in International Conference on Advanced Optical Materials and Devices. 231-236 (International Society for Optics and Photonics).
- Harlin, A., Makinen, M. & Vuorivirta, A. Development of polymeric optical fibre fabrics as illumination elements and textile displays. Autex Res J 3, 1-8 (2003).
- Dupuis, A. et al. Guiding in the visible with. Optics letters 32, 2882-2884 (2007).
- Pone, E. et al. Drawing of the hollow all-polymer Bragg fibers. Optics express 14, 5838-5852 (2006).
- Gao, Y. et al. Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication. Journal of materials research 21, 2246-2254 (2006).
- Gauvreau, B. et al. Color-changing and color-tunable photonic bandgap fiber textiles. Optics express 16, 15677-15693 (2008).
- Sayed, I., Berzowska, J. & Skorobogatiy, M. Jacquard-woven photonic bandgap fiber displays. Research Journal of Textile and Apparel 14, 97-105 (2010).
Inward and outward monitoring
- "Lamp intensity control," I.B.M. Technical Disclosure Bulletin, 8, 8 (1966).
- M. Shamir, L. A. Eidelman, Y. Floman, L. Kaplan, and R. Pi-zov, "Pulse oximetry plethysmographic waveform during changes in blood volume," Br. J. Anaesth., 82, 178-181, 1999.
- P. Klein, M. Hirth, S. Gröber, J. Kuhn, and A. Müller, "Classical experiments revisited: smartphones and tablet PCs as experimental tools in acoustics and optics," Phys. Educ. 49, 412–418 (2014).
- J. Spigulis, "Biophotonic technologies for non-invasive assessment of skin condition and blood microcirculation," Latv. J. Phys. Tech. Sci. 49, 63–80 (2012).
- J. Allen, "Photoplethysmography and its application in clinical physiological measurement," Physiol. Meas. 28, R1–R39 (2007).
- T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, "Wearable photoplethysmographic sensors—past and present," Electronics 3, 282–302 (2014).
- N. Ozana, N. Arbel, Y. Beiderman, V. Mico, M. Sanz, J. Garcia, A. Anand, B. Javidi, Y. Epstein, and Z. Zalevsky, "Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level," Biomed. Opt. Express 5, 1926 (2014).
- M. Nemati, C. N. Presura, H. P. Urbach, and N. Bhattacharya, "Dynamic light scattering from pulsatile flow in the presence of induced motion artifacts," Biomed. Opt. Express 5, 2145 (2014).
- M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, "Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing," Nat. Commun. 6, 7149 (2015).
Solar energy generation and storage
- MIT Energy Initiative, The Future of Solar Energy (2015).
- http://littlesun.com/wp/wp-content/uploads/2016/04/LS_TechSpecs_Little-Sun-Original_dimmer.pdf
- K. Trautz, P. Jenkins, R. Walters, D. Scheiman, R. Hoheisel, R. Tatavarti, R. Chan, H. Miyamoto, J. Adams, V. Elarde, C. Stender, A. Hains, C. McPheeters, C. Youtsey, N. Pan, and M. Osowski, "High efficiency flexible solar panels," in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0115–0119.
- http://www.pvsolar.com/global/ppdesert.html
- https://www.parc.com/content/attachments/solar_blanket_1_side_parc.pdf
- http://science.dodlive.mil/2013/05/07/top-tech-solar-blankets/
- M.R. Lee, R.D. Eckert, K. Forberich, G. Dennler, C.J. Brabec, R.A. Gaudiana, "Solar power wires based on organic photovoltaic materials." Science, 324, 5924, 232-235 (2009).
- K. Jost, G. Dion, Y. Gogotsi, “Textile energy storage in perspective,” J. Mater. Chem. A 2014, 2, 10776 (2014).
Passive wearable technologies
- A. H. Munsell, "A pigment color system and notation," Am. J. Psychol. 23, 236 (1912).
- L. Goria, "Footwear with detachable visibility aids," U.S. patent US4712319 A (1987).
- A. Conan Doyle, "The Hound of the Baskervilles", George Newnes Publ., 1902.
- C. W. Mason, "Structural colors in insects," J. Phys. Chem. 31, 1856–1872 (1926).
- American Chemical Society, "Opal: made of water and quartz, but filled with fire," Chem. Eng. News, 81(4) 59 (2003).
- P.J. Darragh, A.J. Gaskin. "Opaline materials and method of preparation." U.S. Patent No. 3,497,367. 24 Feb. 1970.
- N. Kenkichi, "Structurally colored fiber morphotex." Ann. High Perform. Paper Soc. Jpn 43, 17-21 (2005).
- F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, "Infrared detection based on localized modification of Morpho butterfly wings.," Adv. Mater. 27, 1077–82 (2015).
- J. J. Amsden, H. Perry, S. V Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, "Spectral analysis of induced color change on periodically nanopatterned silk films.," Opt. Express 17, 21271–21279 (2009).
- ASTM International West Conshohocken PA, "ASTM Standard G173-03: Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface," (2008).
- E. Coser, V. F. Moritz, A. Krenzinger, C. A. Ferreira, E. Coser, V. F. Moritz, A. Krenzinger, and C. A. Ferreira, "Development of paints with infrared radiation reflective properties," Polímeros 25, 305–310 (2015).
- https://www.tfl.com/en/technologies/tfl-cool-tec/technology/
- http://blog.tacupgear.com/2015/10/23/ir-and-flir-patches-release/
- R. M. Gooliak, "Thermal blanket including a radiation layer," U.S. patent US20030060107 A1 (2003).
- http://www.columbia.com/technology-omniheatreflective/
- P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, "Personal thermal management by metallic nanowire-coated textile," Nano Lett. 15, 365–371 (2015).
- J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, "Infrared-transparent visible-opaque fabrics for wearable personal thermal management," ACS Photonics 2, 769–778 (2015).
- P.-C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, "Radiative human body cooling by nanoporous polyethylene textile," Science 353 (2016).
- S. V. Boriskina, "Nanoporous fabrics could keep you cool," Science 353, 986–987 (2016).
- N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, "Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants.," Science 349, 298–301 (2015).
- Q. Willot, P. Simonis, J.-P. Vigneron, S. Aron, M. Rassart, and T. Seldrum, "Total internal reflection accounts for the bright color of the Saharan silver ant," PLoS One 11, e0152325 (2016).
- S. R. Anderson, M. Mohammadtaheri, D. Kumar, A. P. O’Mullane, M. R. Field, R. Ramanathan, and V. Bansal, "Robust nanostructured silver and copper fabrics with localized surface plasmon resonance property for effective visible light induced reductive catalysis," Adv. Mater. Interfaces 3, 1500632 (2016).