Vector Description of a Realistic Photonic Crystal Fiber

A. Ferrando, J.J. Miret, E. Silvestre, and P. Andres, Dept. d'Optica, Universitat de València, Spain; M.V. Andrés, Institut de Ciència dels Materials, Universitat de Valencia, Spain.

The most relevant property of periodic dielectric structures (i.e., photonic crystals) is the possibility of generating photonic bandgaps. A related phenomenon occurring in photonic crystal structures is light localization at defects. Although the previous phenomenon of light confinement at defects has already been analyzed in 2-D structures, the study of the guiding properties of dielectric crystals that have a 2-D periodicity in the x — y plane broken by the presence of a defect, but are continuous and infinitely long in the z direction—the so-called photonic crystal fibers (PCFs)—has not yet been performed. However, the experimental feasibility of these fibers has been recently proven. A robust single-mode structure was observed for an unusually wide range of wavelengths, a remarkable property not present in ordinary fibers.

Log in or become a member to view the full text of this article.


This article may be available for purchase via the search at Optica Publishing Group.
Optica Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Add a Comment