References and Resources

A.I. Ekimov and A.A. Onushchenko. “Quantum size effect in three-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 363 (1981).

R. Rossetti et al. “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys. 79, 1086 (1983).

L. E. Brus. “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80, 4403 (1984).

A.I. Ekimov et al. “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921 (1985).

M.A. Reed et al. “Observation of Discrete Electronic States in a Zero-Dimensional Semiconductor Nanostructure,” Phys. Rev. Lett. 60, 535 (1988).

M. Bruchez Jr. et al. “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science 281, 2013 (1998).

W.C.W. Chan and S. Nie. “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science 281, 2016 (1998).

P. Michler et al. “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).

C. Minnaar and B. Anderson. “Using quantum dots as pollen labels to track the fates of individual pollen grains,” Meth. Ecol. Evol. 10, 604 (2019).

J. Du et al. “Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells,” Nat. Energy 5, 409 (2020).

D.C. Kim et al. “Three-dimensional foldable quantum dot light-emitting diodes,” Nat. Electron. 4, 671 (2021).

G.L. Whitworth et al. “Solution-processed PbS quantum dot infrared laser with room-temperature tunable emission in the optical telecommunications window,” Nat. Photon. 15, 738 (2021).

Add a Comment