Two-Photon Machining of Sensors on Fiber Tips

Two-photon lithography (TPL) has helped drive forward the advancement and miniaturization of 3D functional microsystems. Optical fibers integrated with advanced opto-mechanical components represent a promising approach to scale down a variety of novel sensors essential in modern engineering systems. While TPL has been used to fabricate a mechanically suspended Fabry–Pérot cavity (FPC) sensor with curved surfaces on a fiber tip, the inner optical surfaces that form the cavity are shadowed by the top structure, which prevents reflective-coating deposition. Thus the fabricated FPC yields a low quality factor.¹

To solve this issue, we recently used TPL to monolithically integrate dynamic micro-mechanical features into an FPC sensor on a fiber tip (see accompanying figure).² These features, we believe, signify a breakthrough in the integration and fabrication capabilities of micro-optomechanical devices and systems. Our method leverages rotation of a moveable mirror to deposit a thin reflective coating onto the inner surfaces of an FPC with curved geometry. The dynamic optical surface enables directional thin-film deposition onto obscured areas. The reflective coating, coupled with the rotatable mirror, greatly improves the FPC quality factor and enables a new class of highly integrated, multipurpose sensor systems. We used the fiber tip sensor to demonstrate liquid refractive-index sensing with a sensitivity of 2045 nm per refractive-index unit.²

In other work published this year, we further exploited TPL to create a unique spring-body FPC that is also equipped with a hinged, multi-positional mirror to facilitate reflective-coating deposition onto the inner surfaces of the cavity.³ After the thin reflective coating is sputtered onto the cavity’s inner surfaces, the rotatable mirror is locked into its final position. The spring-body FPC demonstrated pressure sensing with a sensitivity of 38 pm/kPa over a range of −80 to 345 kPa.³

Finally, we used TPL to produce a flow sensor consisting of microblades that spin in response to an incident flow.³ Light exiting the optical-fiber core is reflected back into it at a flow-dependent rate as the blades pass by. The fiber-tip flow sensor operated successfully over a range of 9–25 liters per minute (LPM) using nitrogen gas, achieving a linear response of 706 reflections/LPM over a range of 10.9–12 LPM.³

Top: False-color scanning electron microscope (SEM) images of fabricated FPC sensor, with multipositional hinged mirror in the closed position (left), spring-body FPC pressure sensor in the half-open position (center) and flow sensor (right). Bottom left: Three reflection spectra from the top–left FPC sensor in different solutions. Bottom center: Three reflection spectra from top–center spring-body pressure sensor at different pressures. Bottom right: Reflection response of the top–right fiber tip flow sensor.

Adapted from references 2 and 3

REFERENCES